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The percolation transition of geometric clusters in the three-dimensional, simple
cubic, nearest neighbor Ising lattice gas model is investigated in the temperature
and concentration region inside the coexistence curve. We consider “quenching
experiments,” where the system starts from an initially completely random con-
figuration (corresponding to equilibrium at infinite temperature), letting the
system evolve at the considered temperature according to the Kawasaki “spin-
exchange” dynamics. Analyzing the distribution n,(¢) of clusters of size / at time
¢, we find that after a time of the order of about 100 Monte Carlo steps per site
a percolation transition occurs at a concentration distinctly lower than the per-
colation concentration of the initial random state. This dynamic percolation
transition is analyzed with finite-size scaling methods. While at zero tem-
perature, where the system settles down at a frozen-in cluster distribution and
further phase separation stops, the critical exponents associated with this
percolation transition are consistent with the universality class of random
percolation, the critical behavior of the transient time-dependent percolation
occurring at nonzero temperature possibly belongs to a different, new univer-
sality class.

KEY WORDS: Percolation; phase separation, Monte Carlo simulation;
lattice gas model; finite-size scaling.

1. INTRODUCTION AND OVERVIEW OF THE BACKGROUND
THEORY

When one quenches a system that initially is homogeneous on a macroscopic
scale to a state inside the “binodal” (coexistence curve), ie., the boundary
of a two-phase coexistence region, the initial homogeneous state is ther-
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modynamically unstable. As the time ¢ after the quench elapses, microscopic
inhomogeneities, which either have been present in the initial state or have
been formed after the quench by statistical fluctuations, get magnified. The
scale of these inhomogeneities grows and grows with time up to the final
equilibrium state, which is inhomogeneous on a macroscopic scale, composed
of regions of the two coexisting phases (the volume fractions of these
phases are given by the lever rule).

It is commonly accepted that this spontaneous growth of
inhomogeneous structures out of an initially homogeneous system may
proceed by various rather distinct mechanisms, depending on whether the
considered state is close to the binodal or deep inside in the two-phase
region." ) The decay of states close enough to the coexistence curve is
believed to start by nucleation*® and subsequent growth of well-isolated
large-amplitude fluctuations (“heterophase fluctuations,” “droplets™); these
states are called “metastable.” On the other hand, the decay of states well
inside the two-phase region is believed to start by the growth of weak,
delocalized, long-range fluctuations (“spinodal decomposition”-37)),
These states are called “unstable states,” and in mean-field-type theories
metastable states and unstable states are separated by a sharp dividing line
with thermodynamically singular behavior (“limit of metastability,”
spinodal curve”"#19) This line can be defined (for d less than d* = 6 space
dimensions'*"'*) by the condition that the free energy barrier AF* against
nucleation vanishes at the spinodal. It now is well accepted, however, that
such a sharp spinodal line makes sense only for systems with long-range
forces"*™'9; for systems with short-range forces the spinodal curve is ill-
defined, 25141720 and in the kinetic mechanisms of phase separation a
gradual transition from nucleation to spinodal decomposition occurs. 2!
This transition region can only be approximately defined, e.g., by'®!? the
region from, say, AF¥y = 10k T to AF¥: =ky T, where AF¥ is the mean-
field result for the nucleation barrier; this region then always falls between
the mean-field spinodal and the binodal (Fig. 1).

In the present paper, we are concerned with different characteristic
lines in the phase diagram: we consider the geometry of clusters defined as
groups of occupied sites connected by nearest neighbor bonds. While in the
one-phase region for small ¢ only clusters of rather small sizes occur, all
clusters being well isolated from each other, with increasing ¢ one encoun-
ters at c¢7°")(T) a percolation transition where an infinite percolating
cluster first appears, and for ¢ > c{*°™)(T) a finite fraction of the occupied
sites belongs to the largest cluster, which hence has a size proportional to
the volume of the system. The line ¢*™)(T) ends for infinite temperature at
the critical concentration of the random site percolation problem,®>24
cleom(T — o) = cfrandom) (%0312, for the simple-cubic lattice*?7).
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Fig. 1. (a) Schematic phase diagram of a three-dimensional, short-range lattice gas system,
indicating various regions in the plane of variables temperature T versus concentration ¢ of
occupied sites, as well as various lines of percolation transitions. Since the diagram is sym-
metric along the line ¢ = 0.5 if the meaning of occupied and empty sites is reversed, full infor-
mation is given only for the regime ¢ <0.5. Shown are both the coexistence curve (“binodal™)
separating the one-phase region from the two-phase region and the mean-field spinodal curve
separating metastable from unstable states in mean-field theory. The mean-field spinodal is
described here by the equation (0.5 —¢)/0.5= +(1 ~T/T,)'?2, T, being the actual critical tem-
perature. The transition region from nucleation to spinodal decomposition for a short-range
system, as defined in the text, is also indicated. The dash-dotted curves indicate percolation
transitions, as discussed in the text. Shown below are snapshots of a square lattice at ¢ =0.5
for (b) =0 and (c) 7=40 MCS/site, for a quench from a random initial configuration to
T/T.=0.5. Occupied sites are shown by white circles (or black squares, respectively, if they
belong to the largest cluster in the system), unoccupied sites are not shown. Note that the
percolating cluster at =40 MCS/site has grown by aggregation of various medium-size
clusters already existing at (=0, which are connected together by “weak links” that form
when monomers diffuse around and hit these clusters.
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Fig. 1 (continued)
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Although this line for 7'< co describes a correlated percolation problem,**
the correlations are of short range only and hence this percolation trans-
ition still belongs to the universality class®® of random percolation. The
line ¢!e™)(T) ends at the coexistence curve at a temperature 7'~ 0.9677¢%"),

In the present paper, we give evidence that a continuation of this line
also exists inside the two-phase coexistence region, but as a transient time-
dependent phenomenon: after short-range correlations have been built up
after a time f,, we also encounter only isolated finite clusters for
¢ <c\®™(T, t) for t>1,. At a concentration ¢ > ¢{*™)(T, ¢), it then happens
that the system is nonpercolating for short times (f<t,), and stays per-
colating for a finite time interval (¢, <t <t,), while later the percolating
cluster has disintegrated into a set of finite clusters again.®® The extreme
case, where the infinite cluster appears only for a short time (¢,=1,),
defines the so-called “dynamic spinodal” c{*"XT,t,=t¢,) in the phase
diagram.'®® The other extreme case occurs for such concentrations where
the system stays in a percolating state for all times exceeding ¢,, i.e., when
t, - oo, which defines another line ¢{"(7, t, - c0) in the phase diagram.
In fact, between the lines ¢(")(T, 1, - co) and ¢\7°(T, ¢, =1,) we expect a
whole family of lines, depending on the time interval [¢,, ¢,] being con-
sidered. In Fig. 1, we have disregarded this complication, and represent
c{o)(T, t) by a single line denoted “percolating microscopic structure.”

It is interesting to follow the behavior of these lines down to T=0.
While both coexistence curve and mean-field spinodal end in the points
¢=0, c=1, the percolation line c,(f"")(T, t,—o0) ends in a “static” per-
colation point ¢{*°"(T =0) separating the regime of frozen-in finite clusters
from the regime of a frozen-in percolating structure. These states are not in
equilibrium, but are frozen in for infinite times, since at zero temperature no
energy barrier can be overcome, and thus these configurations cannot relax
toward the true equilibrium states (which are macroscopically separated
compact regions with ¢=0 and ¢ =1, respectively).

In addition to these percolation phenomena at a microscopic scale
(where clusters are defined in terms of occupied lattice sites), at late stages
of the phase separation process, where the system is phase-separated on a
scale /(¢) into the coexisting phases with concentrations given by the two
branches of the coexistence curve, ¢!} and ¢{2) , respectively, it makes
sense to consider percolation phenomena on larger length scales, too. Sup-
pose we divide our systems into cells of linear dimension /., with I, < (1),
but /., much larger than the lattice spacing. Most of these cells will then
have concentrations rather close to either ¢} or ¢2) . We now may define
clusters consisting of neighboring cells with concentrations in a given inter-
val [el) —3d¢/2, (1) +8¢/2], and may ask whether these clusters are well-

coex coex

separated from each other or form an infinite percolating network. Since
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/(t) > o0, we may then also take /., — co and at the same time dc — 0, so
that there is no longer any ambiguity in this coarse-grained percolation
problem. The line of this percolation transition in the macroscopic phase-
separated structure must again end in the critical point; we have also
included this line in Fig. 1, but do not discuss it any further in this paper.
We only note that it is this line that would be experimentally accessible by
techniques sensitive to the “contrast,” ie. difference in refraction index,
between the two coexisting phases, such as observations by light or elec-
tron microscope. In addition, we disregard percolation phenomena that
one may observe when one redefines the clusters in order that they reflect
the physical correlations in the system (then the critical point is a
percolation transition®3%). For long-range interactions, the percolation
transition of these “physical clusters” coincides with the spinodal
curve'!?3V); the significance of the percolation transition of “physical
clusters” (in the sense of Refs. 29 and 30) inside the coexistence curve is not
yet known for the case of short-range interactions, however. Previous work
on percolation phenomena during phase separation either has been restric-
ted to qualitative considerations only®*?’ or has studied the fractal
dimension®®’ of phase separation clusters at particular points in the phase
diagram only.®3*% In our opinion, the observation of fractal dimen-
sionalities for phase separation clusters possibly can be interpreted by
assuming that the data of the model of Ref. 34 were taken not very far from
the line ¢{*)(T, ). This assumption is consistent with the observation in
Ref. 34 that about one-half of all the atoms did belong to the percolating
cluster that was analyzed—such a value of the percolation probability
occurs close to a percolation threshold only. In two dimensions cluster
properties of a phase separating system on a triangular lattice have been
studied®”) at a concentration c¢=1/2. However, there the system always
stays percolating.

Another question that needs to be addressed but is outside of the
scope of the present work concerns the extent to which the percolation
transition at ¢{*")(7, t) has any effect on experimentally observable quan-
tities, such as the structure factor S(k, t). Predicting S(k, ¢) at the later
stages of phase separation is a formidable problem‘!%21:333%); since many
ideas on the subject use concepts on cluster dynamics,**>7
understanding of the cluster geometry may be a useful ingredient of a more
complete theory. Also, we do not analyze in any detail the time dependence
of the “kinetic gelation” by which the small clusters present initially
aggregate to form the infinite percolating net, for ¢ > ¢*(¢, = t,).

In Section 2, we describe in more detail the model simulated to map
out the line ¢°™(7, ¢) in Fig. 1, and explain the procedures by which the
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simulation data were analyzed. Section 3 discusses critical exponents on the
basis of a finite-size scaling®***°) analysis. Section 4 contains a discussion of
our results and an outlook on possible future work.

2. MONTE CARLO INVESTIGATION OF DYNAMIC
PERCOLATION IN THE SIMPLE CUBIC LATTICE

We study simple cubic L* lattices, choosing linear dimensions
L =10,15,20, 30, and 40 (the two smaliest linear dimensions have been
found less useful and are included only occasionally). For T=0, also
L =50 is considered. The initial state of each simulation run is a completely
random configuration. We then let the system evolve in time using the
standard Kawasaki-type*" dynamics, as usual for Monte Carlo
simulations of phase separation.>**»? In each run we monitor the time
evolution of the size of the largest cluster, applying standard cluster
counting and cluster identification algorithms.**?"2®) Of course, there
occur huge fluctuations in the size of the largest cluster; therefore, it is
necessary for each choice of the variables temperature T, concentration c,
and lattice linear dimension L to take a sample of n statistically indepen-
dent time evolutions, where typically n=40-50. These n different time
evolutions are generated by choosing different random numbers for each
random starting configuration, as well as different random numbers for
executing the desired random exchanges by which the time evolution of the
model proceeds.

As an example, Fig. 2a shows the time evolution of the largest cluster
for T/T,=0.3 at short times (0-80 Monte Carlo steps/site) and Fig. 2b
shows the results for a longer time scale (0~800 Monte Carlo steps/site). It
is seen that in the short-time regime the cluster size increases rapidly with
increasing time, reaches a maximum, and then decreases. It is also
recognized that in spite of using a system of 64,000 lattice sites and
averaging over a sample n=40-50, there are still appreciable fluctuations
in cluster size. In order to gain statistics we hence have averaged these “raw
data” over a time interval A¢ for such times where the cluster size dis-
tribution #,(¢) did not change much with time. Obviously, this cannot work
for the early-time regime, where n,(¢) strongly increases for large / (at the
expense of small clusters, in particular monomers, which are present
initially but gradually disappear as phase separation proceeds). Most of the
data analyzed below are averages over the interval from (=80 to
t =240 MCSysite, ie., the region of the peaks in Fig. 2. We have analyzed
similarly the behavior in the Ilater-time region from ¢=640 to

2 See also Ref. 44 for more details.
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t=2800 MCS/site for T/T,=0.3; the decrease of the size of the largest
cluster seen in Fig. 2 leads to a slight increase of the percolation concen-
tration ¢{°"(T, ¢) with time.

If the final temperature T of the quench is 7T=0, the behavior is
somewhat different (Fig. 3). After a relatively short time, a stationary
cluster size distribution is reached. This behavior is easily interpreted
physically: at T=0, only such exchanges are possible that do not involve
any energy cost.’ If the initial state did consist of an assembly of well-
separated small clusters, as happens in the regime of concentrations far less
than the percolation threshold c{#™°™), basically only monomers are
mobile (Fig. 4). These monomers will diffuse around until they get attached
to some of the larger, immobile clusters. Although some motion is also
possible for the larger clusters (Fig. 4b) and even within the infinite per-
colating net (Fig. 4d), such motions are not sufficient to maintain a coar-
sening of the structure. Due to the coarsening at nonzero temperature some
loosely bound parts of the largest cluster break off again,®* and this effect
leads to a decrease of the size of the largest cluster at intermediate time
scales. But even at zero temperature an analytic treatment of the “cluster
dynamics” is not possible on a rigorous basis, as additional monomers may
be created due to processes such as shown in Fig. 4c. Due to processes
similar to those of Fig. 4b, sometimes one also reaches states where the
cluster size distribution is not exactly stationary, but is irregularly
oscillating in time: These fluctuations are also smoothed out by averaging
over suitable time intervals Azt

Figure 5 summarizes our results for the percolation probability P,
which we have estimated by dividing the number of occupied sites con-
tained in the largest cluster by the total number of occupied sites. It is seen
that there occur rather pronounced finite-size effects in the concentration
regime of interest; an analysis of these finite-size effects will be attempted in
the next section. Here we only note that the curves for P, for different L
intersect in a rather narrow concentration interval, which can be taken as
an upper bound for any estimate of ¢{*")(T, ¢), ¢ being chosen in the inter-
val 4t from =80 to 240, as noted above. Figure 6 shows a quantitative
phase diagram of the simple cubic lattice gas model, including the results
for ¢{*™X(T, ) resulting from Fig. 5. In order to check for any systematic
errors due to the smoothing of the data over the time interval Az, we have
also analyzed data for P, taken at the fixed time ¢ = 120 and verified that
the resulting curves within their error bars are completely indistinguishable
from those shown in Fig. 5.

* Previous work on phase separation kinetics at T=0 has been performed for concentration
¢=1/2 only.“®
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Fig. 3. Time evolution of (a) the full cluster size distribution and (b) the size of the largest
cluster, in a system of linear dimension L =40 and temperature 7 =0 for concentrations and
times, respectively. Data points are the result of sampling over n=40-50 statistically indepen-
dent time evolutions.
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Fig. 4. Motions possible in quenching experiments at T=0. (a) A configuration with a
monomer, indicating that after a random walk motion it gets attached to a pentamer. Here-
after the configuration is frozen. (b) A configuration containing two trimers and one dimer.
Although the motions indicated in the figure can go on back and forth indefinitely, they do
not affect the cluster size distribution. (c) A situation where two motions destroy a trimer and
create a free monomer again. (d) Motions of dangling ends in a percolating cluster at 7=0.

Of course, it also is of interest to compute and analyze various other
quantities that characterize the cluster size distribution n,(¢) near this
percolation transition. For example, we are interested in the
“susceptibility” #2729

1= (1) (1)

where the prime indicates that the largest cluster in the system is excluded
from the summation. Figure 7 shows data for y at 7=0. One finds the
familiar picture of a peak that grows to infinity as L — co. Extrapolation of
the peak position gives another criterion to locate the percolation concen-
tration, as indicated in the inset.



1

/

d) %
0‘ 1 S l

01 02 03 015 02 025 015 02 025

cC ——

Fig. 5. Percolation probability P, plotted versus concentration ¢ in the lattice gas model,
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indicated. Data are obtained from time averages from ¢ =80 to ¢ = 240 MCS/site during phase
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3. FINITE-SIZE SCALING ANALYSIS AND DISCUSSION OF
CRITICAL BEHAVIOR

It is quite obvious from the “raw data” presented in Figs. 5 and 7 that
both P_, and y are strongly affected by finite-size effects, and a careful
analysis of these effects is necessary if we wish to analyze the critical
exponents of the percolation transition occurring at !XT, t). We hence
apply the standard finite-size scaling relations [in this section we
abbreviate ¢ — ¢(®™(T, 1) as 6¢]7%*

P (L, c)=L~PB(5cL"") 2)
AL, ¢)=L"3(dcL'") (3)

where v is the correlation length exponent, f and y are the critical
exponents of P, and [P (L — o) o (6¢)?, (L = ) o (6¢)~"], and P,
¥ arc associate scaling functions.

First we use Eq.(2) to justify the phenomenological intersection
method used in Fig. 5 to infer first rough estimates for c¢{*™)(T, 1). At fixed
L, P (L, c)is a continuous function near éc =0, and hence for small d¢c we
must have

P—(écLl/V)z}_’(O)-kP’(O) ScL\ + ... (4)

with P’(0)>0, since P_(L,c) is an increasing function of ¢. Now the
equation P (L, c)=P_ (L', ¢} defining an intersection point yields

L™ —(L)"#"  P(0)

dex >
4 (L/)l/vfﬂ/v__Ll/V—ﬂ/V P’(O) ( )

Equation (5) shows that 5c —» 0 as L — o0, i.e., the abscissae of the intersec-
tion points do converge toward ¢°™)(T, ¢) in Fig. 5. Morecover, one sees
that éc >0, and hence ¢*°)(T, t) in general is slightly overestimated by
this intersection method. This prediction is consistent with our data: e.g., in
Fig. Se the intersections occur near ¢ ~0.17, while the extrapolation of the
maxima of y(L, c) yields c!*°™)(0, t)~0.160 (Fig.7). Another prediction
resulting from Eq. (2) yields for the ordinate of the intersection point a
decrease proportional to L~#* with increasing L. This prediction also is
compatible with the data; see Fig. Sc.

More precise estimates for ¢{™)(T, ¢) would result from the intersec-
tion method if one would apply it to a quantity the scaling power of which
is zero in the finite-size scaling analysis. For standard critical phenomena
(e.g., Ising models) a convenient quantity®*” for this purpose is the nor-
malized cumulant of the probability distribution of the order parameter s,
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ie, 3U, =3~ (s*>,/(2{s?>2): It varies between zero and unity, and has a
finite nonzero value at criticality. For the percolation problem, an
analogous quantity would be the probability P (L, ¢) to have a “spanning
cluster” in a finite system of linear dimension L (a “spanning cluster”
extends from one boundary of the system throughout the system to the
opposite boundary).“® In thke thermodynamic limit, Py(o0,c)=0 for
c<c®)(T, 1) and Py(oo,c)=1 for c¢> (T, t) similar to the above
quantity 3U,. The ﬁnlte -size scaling relation for P (L, ¢) simply is

P(L,c)=P(5cL') (6)

and hence the equation P(L, c)= P(L’, ¢) yielding the intersection point
implies dc = 0. In practice, however, P (L, ¢)=P,(L', ¢) will also not yield
precisely dc=0, due to corrections to finite-size scaling. In addition, the
statistical effort needed to yield information on P (L, ¢) is much larger than
for P_(L, c), and hence P (L, c) was not recorded.

In order to get reasonable estimates for ¢(°(T7, ¢) from Fig.5, we
proceed as follows: We choose some preliminary estimates for § and v, and
then we plot the abscissa ¢* of the intersection point of P, (L) and P (L’)
versus the variable

[Lrlf/v _ (Lf)—ﬂ/v]/[(Lf)l/vvﬂ/V_ Ll/vfﬁ/v]

Then Eq. (5) implies that all points ¢*(L, L’) should fall on a straight line;
the intersection of this straight line with the ordinate axis is then an
improved estimate for ¢ (T, t). Figure 8 shows that this procedure
works, but it allows an extrapolation both with the exponents of random
percolation (=045, v=0.88; sce Fig. 8a) and with rather different values
(B=0.48, v=0.70; see Fig.6b). The systematic difference between the
estimates for ¢{°™(7, ¢) resulting from these extrapolations gives an idea
about the accuracy Ac with which we can estimate ¢\°™(T, ¢) from our
data (4c=0.005).

In view of the uncertainty in the precise value of c(°™(T, ), we have
tried to analyze our data in terms of Eqgs. (2) and (3), treating both the
exponent estimates (1/v, B/v, y/v) and c{°™(T, ¢) as fitting parameters. Due
to the restricted accuracy of our data for P(L,c) (Fig. 5) and x(L, c¢)
(Fig. 7), it turns out, however, that the fitting procedure does not favor a
particular unique choice of parameters f, v, and c{*"(T7, t). Rather, a fit of
reasonable quality can be obtained for a broad range of concentrations
clem)(T, t), and the exponent estimates are strongly correlated with the
estimate for ¢{™(T, ). As a consequence, the accuracy of estimates
resulting from thls finite-size scaling “data collapsing” procedure is rather
uncertain (of course, this is the standard difficulty of this method, as is well
known“®).
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Fig. 9. Finite-size scaling plots for P, and y at T=0. Both L#"P_(L, c) and L™ "y(L, c)
are plotted versus dcL'”. The choices c{™0, t)=(a) 0.168 and (b) 0.164, with the resulting
“best fit” exponents f=0.12, v=0.89 [from P, case (a)] or y=1.50, v=0.78 [from y, case
(a)] or =0.28, v=0.80 [from P, case (b)] or y=1.56, v=0.81 [from y, case (b)]. (c) The
choice c}f"")(O, r)=0.160, with the exponents =045, y=0.88, ie, the known values of the
standard random percolation problem®*). Note that y/v=1.92 following from (a) or (b)
would also be consistent with the data shown in Fig. 7b within their statistical error.
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Fig. 9 (continued)

We first analyze the situation for T=0. Figure 9 shows three fits for
both y and P.,. If we choose ¢{°™(0, ¢) = 0.168, which would be closest to
the intersection points in Fig. Sc, the estimates for v resulting from P, and
y are not in full agreement with each other, and the hyperscaling relation
7 +2B=3v is strongly violated. Also, for ¢{*"(0, 1) =0.164 there is still a
distinct violation of the hyperscaling relation, and the fit is obviously not
significantly better than in the case shown in Fig. 8¢, where we use
¢om(0, 1)=0.160 (which is a reasonable choice, as shown by the
extrapolation in Fig. 7), and the theoretical “best values” for the exponents
of the random percolation problem in d=3 dimensions, namely®*
p=045,y=1,74, v=088. Also, for choices c{*°™(0, r) ~0.161-0.163 these
random percolation exponents still yield reasonable fits.**) We conclude
that for T=0 the percolation transition occurring in these quenching
experiments . most probably falls in the universality class of standard
random percolation.

For T#0, however, the situation is not so clear. Irrespective of the
choice of ¢{*™)(T, 1), we never obtain a “data collapsing” of the curves for
P (c, L) on a single curve with a reasonably small scatter, if we impose the
random percolation exponents. Rather, one always sees drastic systematic
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deviations, as shown in the examples presented in Fig. 10. On the other
hand, now the “best fit” exponents are fairly independent of temperature,
and also the estimate for v is distinctly smaller than the random per-
colation value. Note that while f is strongly dependent on the choice of
c&o"(T, t), v varies much less. Varying c{°™(T=03,¢) from 0.177 to
0.187, we find that only values v in between 0.55 and 0.71 occur. Varying
clom(T'= 0.6, t) from 0.199 to 0.209, we find only values of v between 0.50
and 0.68. Also, Fig. 8 shows relatively little variation of the fitted v with
c{r(0, t). This result could mean that the critical behavior along the per-
colation transition line ¢{")(7, t) for T>0 belongs to a different univer-
sality class than that of the transition at 7= 0, which we believe is simply
random percolation, though with a critical concentration only about one-
half as large as in the random site percolation problem. Such a conclusion,
if correct, would be rather surprising, since the percolation transition along
the whole line ¢{™(T) in the one-phase region belongs to the universality
class of simple random percolation again.

In order to study this problem further, we have also studied the cluster
size distribution function 7,() at the critical concentration ¢ = c{")(T, t);
see Fig. 11. Since our lattices are rather small and the effective critical con-
centration is shifted to larger values for these small lattice sizes L, we have
chosen those effective values rather than the values extrapolated to L — oo
in Fig. 8. It is seen that the data are reasonably consistent with the expec-
ted power law variation?

nt) oc 77, =241/ (7)

In all cases we find an exponent 7 > 2, as it should be, and again at T=0 it
is nicely consistent with the theorctical value of random percolation
[1/6=B/(y + )~ 0.21], while for T>0, t seems to be somewhat smaller,
implying a smaller value of 1/5, consistent with the estimate 1/6x0.16
following from the estimates for § and y quoted above. However, the
statistical errors of t always are of the order of 0.05 at least, and there may
be an additional systematic error due to the inaccuracy in the choice of
cleo)(T, 1). From the data in Fig. 10 we cannot rule out that one observes
simple random percolation at all temperatures.

Obviously, the accuracy of our study of the critical behavior of the
percolation transition in phase separation is by far less than the accuracy
that now is standard in the study of the ordinary percolation
problem.?**¥°% Of course, this must be expected. In one MCS/site one
generates a new and statistically independent configuration of the lattice for
the ordinary site percolation problem, while in the present problem we
have to let the system evolve of the order of 100 MCS/site to generate a
new configuration.
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4, DISCUSSION

The main result of this paper is contained in Fig. 6, where it is shown
that a percolation transition can be located throughout the two-phase
region of an Ising lattice gas model occurring during the intermediate
stages of phase separation (¢ being of the order of 100 MCS/spin). At
T=0, we obtain evidence that the percolation transition belongs to the
universality class of simple random percolation, although the critical
concentration is reduced by about a factor of two [c{* =031,
cleom(T=0,1)~0.16]. Although a reduction of the critical concentration
in comparison with c{*™ is expected, since the “monomers” are removed
from the system during the process and attached to the larger clusters
(Fig. 4), the large amount of this reduction was unexpected [note that for
c=c!{*™ only about 12% of the occupied sites belong to monomers]. For
T >0, the critical behavior seems to be less compatible with that of random
percolation, and indicates different exponents, which would imply that the
transient dynamic percolation during phase separation belongs to a new
universality class. This finding is rather unexpected, since the dynamic
structure factor S(k, ) exhibits no significant correlations at large distances
during the early and intermediate stages of phase separation. Correlations
are seen in S(k, #) only from small distances up to the characteristic length
scale I(¢), and on length scales L3> I(z) the configuration is still rather
random. Of course, it may be that the intrinsic instability of the system
influences the diffusion process on large length scales in such a way that the
cluster statistics is strongly affected even for cluster sizes much larger than
I(¢). From the studies of irreversible growth phenomena such as diffusion-
limited aggregation or cluster—cluster aggregation,* one knows that the
existing irregular clusters have a strong effect on the probability dis-
tribution for the diffusion of the surrounding objects. Since the percolation
cluster in our case also appears as a result of a specific growth
phenomenon, it is conceivable that it belongs to a new universality class.

What are the consequences of the percolation transition at {7, 1)
for our understanding of phase separation dynamics? It is not obvious that
one can see any singular behavior in the dynamic structure factor S(k, ¢).
After all, the percolation transition at c}f"")(T) in the one-phase region is
irrelevant for the static structure function S,(k), which is singular at the
critical point only. It is well known that “physical clusters”@*3® rather
than geometrical clusters show up in the physical correlation functions. At
low temperatures physical and geometrical clusters do become identical,
however. Thus, it is reasonable to expect that if one studies the percolation
of “physical clusters” instead of geometrical clusters during phase

* For a thorough recent review of growth phenomena see Ref. 51.
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separation, one will find a line of percolation transitions similar to Fig. 6,
starting at 7'=0 at the same point cl(f"")(O, t)=0.16, but at higher tem-
peratures it will deviate distinctly from cl(f"")(O, t) and bend over to higher
concentrations, to end at the critical point T'=T,, ¢= ¢, = 1/2, similar to
the dash-dotted curve in Fig. 1 describing the percolation transition in the
coarse-grained structure of the late stages. Neither of these percolation
phenomena is taken into account in current theoretical descriptions of
phase separation kinetics. In fact, much recent activity has been directed
toward an extension of the Lifshitz-Slyozov®?® cluster-evaporation and
condensation mechanism to higher concentrations.®3%437 All these treat-
ments, as well as work considering the droplet diffusion and coagulation
mechanism, ®”) treat the clusters as essentially compact, spherical objects.
In contrast, our work shows that the usecfulness of these approaches
probably is restricted to concentrations distinctly smaller than c}f""’( T, t).
We have an infinite percolating net, and coarsening proceeds by the
breakoff of atoms from dangling ends or other small-scale structure of the
net. These atoms diffuse around in the matrix and get reattached to the net
in such a way that thin links in the net either get thickened or “evaporate.”
Right at ¢{*°(T, 1), we still have very large but finite separated clusters,
described by the distribution (7), but they are not compact objects, but
rather fractals.®® Their fractal dimensionality d, can be expressed in terms
of the exponents of the percolation transition in the standard way®* as

dy=d— By~ 249 (8)

where we have used the exponents appropriate for random percolation [if
the transition at ¢{*™(7, t) belongs to a different universality class with
p~048, y=0.70, d,~ 2.3, which implies that the clusters would be slightly
less compact].

Various mechanisms of cluster growth and coarsening considered in
Refs. 37 and 51-64 assume compact (essentially spherical) droplets.
However, the large but finite clusters that occur for concentrations ¢
slightly below c!°™(T, ¢) [which are described by the cluster size dis-
tribution n,(1) oc [77 for - o0 at ¢ =T, 1)] are not at all compact,
but rather ramified objects. This fractal structure should have a pronoun-
ced effect on the rates of the various cluster growth mechanisms; e.g.,, a
standard assumption is that the number of atoms evaporating from the sur-
face of a cluster containing / sites per unit time is a rate constant /” times
the surface area of the cluster. For a compact d-dimensional cluster the sur-
face area S, is proportional to /' = and this power law S, oc I' ~'?is used
explicitly both in the derivation of the Lifshitz-Slyozov®*"* law /() oc %7
and in the derivation of the growth law (t) oc t¥?*3) resulting from cluster
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diffusion and coagulation®**") when one assumes that the cluster diffusion
is due to atoms that evaporate and reimpinge on the same cluster. A single
event of this type produces a shift of the cluster center of gravity of order
I='. Then the cluster diffusion constant is D, oc S,/=2 oc 7'~ Assuming
that two clusters of about the same size / can coalesce when they have
diffused a distance of their own size /, which needs a time Ar given by
*= D, At, one obtains

dlfdt ~ AlAL = J(P4D) oc 1-%4,  I(1) oc 1+

as quoted above. Assuming now fractal instead of compact clusters, we
have §, oc I* with {>1—1/d, and D, oc /* 2 Then the same reasoning as
above would yield instead

dljdt =~ )(P'%/D,) oc IF~ 1%

and the growth law would become /(¢) oc tY/1?=¢+ 41 The fractal structure
in this case would be reflected in a nontrivial value of the growth exponent
relating the typical domain size /(¢) to the time .

Binder and Kalos®” pointed out that at temperatures not too low the
dominating mechanism of cluster diffusion is effected by random
evaporation and condensation events of atoms the typical distance of
which is of the order of the cluster linear dimension itself. Then

Dl oc Sl(171+1/df)2 o l§72+2/d/ (9)

and since d,~2 for d=2 and { =1 for rather ramified objects, one would
obtain a cluster diffusion constant that does not decrease with cluster size,
ie., a rapid diffusion of clusters would result. The physical consequences of
this rather rapid motion of the clusters near c,(f"“)(T L t), as well as the
accompanying rapid rearrangements of their shapes, need to be elucidated.

An alternative growth mechanism of the fractal clusters might be a
“filling in” of the domains, which then initially would compactify. This
mechanism was observed in Ref. 68 in a medium-range model with noncon-
served order parameter. It is not clear to what extent this mechanism is
effective in the present model with conserved concentration, where
monomers would have to diffuse to the center of the domains from the out-
side in order to compactify. This diffusion to the center will probably be
screened out, similar to what happens during cluster growth in diffusion-
limited aggregation.

Another property of the clusters becomes crucial in the limit 7' — 0.
Then predominantly only particular atoms can be broken off a cluster by
thermal fluctuations, namely those atoms that in “dangling ends” are
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Fig. 12. Schematic picture of a fractal cluster as it occurs near the percolation threshold

¢l T — 0, ) in phase separation dynamics. The atoms in dangling ends are encircled;
predominantly those atoms contribute to the further time evolution of the system.

bound to a single other atom of the cluster (Fig. 12). For the number n /)
of atoms in dangling ends of an /-cluster we again expect a power law

ngl) oc I° (10)

but the exponent § is unknown. At low enough temperatures, it may be
appropriate to replace S; by n /) in the above formulas for the cluster
diffusivity and in the consideration of the Lifshitz—Slyozov mechanism.
Another rather intriguing aspect of our results is that the finding
o0, 1)~ 0.16 happens to agree with the so-called critical volume
fraction ¢, =0.16,>%® which is the percolation treshold when spheres are
randomly placed in the continuum. It has been suggested G2 that there
exists a critical volume fraction of the coexisting phases,
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where the macroscopic structure of phase-separated domains of the two
phases having the concentrations ¢{!) and ¢} percolate (the inner dash-

coex

dotted curve in Fig. 1). It is tempting to speculate that ¢_;, is the same as
¢.; this would imply that the two dash-dotted curves in Fig. 1, describing
percolation thresholds for intermediate and for late stages, end at T=0 in
the same point.

We are fully aware that this whole section is very speculative, and
poses many questions rather than yielding definitive results. But we feel
that understanding the dynamics of coarsening of percolating structures is
crucial for making progress in the understanding of phase separation
kinetics, and hope that the present work will be a stimulating starting point
for further work along these lines.
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